

UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE INGENIERÍAS PROGRAMA DE INGENIERÍA ELÉCTRICA

Código de asignatura: IE524

Nombre del programa académico	Ingeniería Eléctrica
Nombre completo de la asignatura	Circuitos Eléctricos I
Area académica o categoría	Profesionales y especificas
Semestre y año de actualización	Semestre 1 − 2022
Semestre y año en que se imparte	Semestre 5– Año 3
Tipo de asignatura	[x] Obligatoria [] Electiva
Número de créditos ECTS	7
Director o contacto del programa	José Germán López Quintero
Coordinador o contacto de la asignatura	Diego González Ocampo

Descripción y contenidos

1. Breve descripción

La asignatura de Circuitos Eléctricos 1 es de naturaleza teórica, donde se presenta la fundamentación teórica para plantear modelos matemáticos que describan el comportamiento dinámico de circuitos eléctricos y permitan encontrar las diferencias de potencial entre los terminales y las corrientes a través de los elementos de circuito -lineales, bilaterales, pasivos, invariantes con el tiempo y de parámetros concentrados- que hacen parte de una interconexión arbitraria de ellos o red cuando ésta se excita con fuentes independientes de voltaje y/o corriente cualesquiera utilizando diferentes métodos.

2. Objetivos

- Se espera que al finalizar el curso es estudiante este en capacidad de plantear modelos matemáticos que describan el comportamiento dinámico de circuitos eléctricos y permitan encontrar las diferencias de potencial entre los terminales y las corrientes a través de los elementos de circuito -lineales, bilaterales, pasivos, invariantes con el tiempo y de parámetros concentrados- que hacen parte de una interconexión arbitraria de ellos o red cuando ésta se excita con fuentes independientes de voltaje y/o corriente cualesquiera utilizando diferentes métodos. Esta en correspondencia con los objetivos del programa (OP-1), (OP-2) y (OP-3).
 - 3. Resultados de aprendizaje
- RA1: Modelar matemáticamente circuitos eléctricos.
- RA2: Encontrar diferencias de potencial entre los terminales y las corrientes a través de los elementos de circuito.
- RA3: Aplicar métodos de solución para ecuaciones diferenciales en el dominio del tiempo y en espacio transformado de frecuencia compleja usando transformada de Laplace.
- RA4: Solución de circuitos usando el método fasorial.
- RA5: Capacidad de pensamiento crítico.
- RA6: Capacidad de resolver problemas.
- Los anteriores objetivos corresponden a los siguientes resultados de aprendizaje del programa: (RAP-1), (RAP-2), (RAP-3), (RAP-4), (RAP-5), (RAP-7), (RAP-14), (RAP-16)
 - 4. Contenido
- T1: El concepto de circuito (13 h).
- T2: Ecuaciones de red (20 h).
- *T3: Condiciones iniciales (17 h).*
- T4: Transformada de Laplace (10 h)
- T5: Teoremas de circuitos (8 h).
- T6: Análisis sinuosidad en estado estacionario (12 h).
 - 5. Requisitos
- Asignaturas: Matemáticas 4 (CB413).
- Competencias: El estudiante debe tener conocimiento en la solución de ecuaciones diferenciales y la transformada de Laplace. Al finalizar la asignatura el estudiante debe estar en capacidad de modelar matemáticamente circuitos eléctricos, encontrar diferencias de potencial entre los terminales y las corrientes a través de los elementos de circuito, y encontrar la solución del circuito a partir de ecuaciones diferenciales en el dominio del tiempo y en espacio transformado de frecuencia compleja usando transformada de Laplace.

UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE INGENIERÍAS PROGRAMA DE INGENIERÍA ELÉCTRICA

6. Recursos

- Libros de texto:
- [1] Desoer, Charles A. y Kuh, Ernest S., "Basic Circuit Theory", McGraw-Hill, 1969
- [2] Brenner, Egon y Mansour, David, "Análisis de circuitos eléctricos", McGraw-Hill, 1969.
- [3] kinariwala, Barath y otros, "linear circuits and computation", John Willey and
- sons, New York, 1973
- [4] Jensen, Randll W. y Watkins, Bruce, "Network Analysis", Prentice Hall, 1974.
- [5] Van Valkenburg, M.E. "Análisis de redes", Limusa, México, 1979
- [6] Peikari, Behrouz, "Fundamentals of network analysis and synthesis", Prentice Hall, Engleewood Cliffps, 1974.
- [7] Chan, Shu Park y otros, "Analysis of linear networks and systems", Abbison Wesley, 1972.
- Herramientas informáticas
- Software de simulación Matlab™ y Simulink™.
 - 7. Herramientas técnicas de soporte para la enseñanza
 - Simulación de circuitos eléctricos usando MatlabTM y SimulinkTM.
- Tutoriales: https://sites.google.com/utp.edu.co/controlautomatico/tutoriales
 - 8. Trabajos en laboratorio y proyectos
- Se realizan talleres o actividades de simulación de trabajo fuera de clase o independiente (9 h).
- Esta asignatura tiene asociado el Laboratorio de Circuitos Eléctricos 1 (IE612) (4 ECTS).
 - 9. Métodos de aprendizaje
- Clases magistrales.
- Lectura de artículos especializados.
- Tutorías.
- Actividades académicas independientes, personalizadas y supervisadas en forma de talleres.

10. Métodos de evaluación

Para la obtención de la nota definitiva se realizan diferentes pruebas escritas individuales en el aula durante el semestre, de las cuales están previstas:

- Examen 1: El concepto de circuito (T1), Ecuaciones de red (T2): (25%). Se evalúan los resultados de aprendizaje (RA1, RA2, RA4, RA5).
- Examen 2: Condiciones iniciales (T3): (25%) (RA1, RA2, RA3, RA4, RA5).
- Examen 3: Transformada de Laplace (T4): (25%) (RA1, RA2, RA3, RA4, RA5).
- Examen 4: Teoremas de circuito (T5). Análisis sinuosidad en estado estacionario (T6) (25%) (RA1,
- RA2, RA3, RA4, RA5).