

Práctica 4: Teorema de Superposición Laboratorio de electrónica general

Introducción

El teorema de superposición es una técnica fundamental que simplifica el análisis de circuitos lineales con múltiples fuentes de voltaje o corriente. Permite determinar el comportamiento de un circuito considerando el efecto de cada fuente por separado, y luego combinando los resultados para obtener la respuesta total del sistema. Aunque el principio es aplicable solo a circuitos lineales, su uso facilita la comprensión del impacto de cada fuente en el circuito. No obstante, debido a las restricciones de tiempo y recursos, nos enfocaremos en aplicar este teorema solo a circuitos con dos o tres fuentes para mantener la práctica dentro de los límites operacionales disponibles.

Objetivos

- Calcular de forma experimental un voltaje utilizando el pricipio de superposición.
- Comprender como se anula una fuente de voltaje dentro un circuito práctico.

Materiales

- 3 resistencias de $1k\Omega$
- 1 resistencia de $2.2k\Omega$
- 1 resistencia de $3.3 \mathrm{k}\Omega$
- 1 resistencia de $10k\Omega$
- 1 resistencia de $4.7 \mathrm{k}\Omega$
- Fuente DC de 3 canales
- Multímetro

Procedimiento

Medición del Voltaje de interés V

Monte el circuito de la figura (1) con las magnitudes especificadas para cada elemento. Use el multímetro con el fin de medir el voltaje suministrado a la resistencia de $3.3k\Omega$, denotado como V. Apunte este valor en la tabla 1, al igual que el valor de V conseguido mediante el análisis teórico.

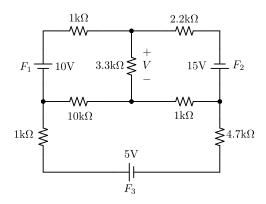


Figura 1: Circuito para el laboratorio de equivalente Thevenin

Medición del efecto de F_1 sobre V (V_{F_1})

Anule las fuentes F_2 y F_3 (desconectelas de el circuito y reemplacelas por un conductor), tal como se muestra en el circuito de la figura (2) y mida el valor de V_{F_1} en la resistencia $3.3k\Omega$.

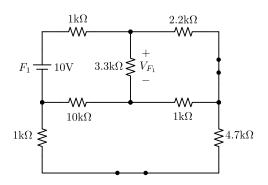


Figura 2: Circuito para medir el efecto de F_1

Consigne el valor de V_{F_1} tanto teórico, como práctico en la tabla 1

Medición del efecto de F_2 sobre V (V_{F_2})

Anule las fuentes F_1 y F_3 tal como se muestra en la figura (3), y mida valor de V_{F_2} . Anote el valor medido, así como el valor calculado teóricamente en la tabla 1.

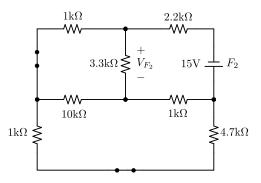


Figura 3: Circuito para medir el efecto de F_2

Medición del efecto de F_3 sobre V (V_{F_3})

Por ultimo anule las fuentes F_1 y F_2 , tal como se muestra en el circuito de la figura (4) y mida el valor V_{F_3} . Anote este valor, así como el valor calculado de manera teórica en la tabla de la figura 1

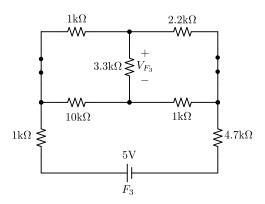


Figura 4: Circuito para medir el efecto de F_3

Análisis

- 1. Con base en los resultados obtenidos, cuál es la relación entre V , $V_{F_1},\,V_{F_2}$ y $V_{F_3}.$
- 2. ¿Esta relación se hubiera cumplido, si en lugar de fuentes de voltaje, el circuito tuviera fuentes de corriente?
- 3. ¿Esta relación se cumple tanto para circuito lineales como no lineales?

Variable	Valor experimental	Teórico	$E_{\rm exp}$	$E_r[\%]$
V				
V_{F1}				
V_{F2}				
V_{F3}				

Tabla 1: Comparación de los datos recolectados según la referencia de apartado

