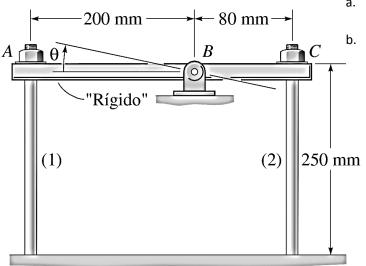

Prof: Luis Carlos Flórez García


Facultad de Ingeniería Mecánica -- Universidad Tecnológica de Pereira

- 1. El recipiente cilíndrico con terminados semiesféricos tiene paredes con un espesor de 18 mm fabricadas en acero AISI 1045 laminado en frio con una resistencia última a tracción de 628 MPa, E = 210 GPa y μ = 0.3. Si el recipiente se utiliza para garantizar un factor de seguridad de 3,7, ¿cuál sería la presión interna máxima a la que puede trabajar el recipiente? (NOTA: 0,5) Si el recipiente lo fabrico con láminas de acero soldados a 35° con respecto a la horizontal y una resistencia máxima a cortante de 274 MPa. ¿podría mantener la presión interna calculada con el mismo factor de seguridad, cuanta presión puede soportar el recipiente? (NOTA: 0,5)
- 2. La barra rígida horizontal ABCD se encuentra cargada por P₁ y P₂, además, esta soportada por dos barras verticales BE y CF. La barra BE está fabricada en acero (E=210 GPa) con un área de sección transversal de 111 cm². La barra CF fabricada en aluminio (E=96 GPa) con un área de A_{CF} = 92,8 cm². Determine los desplazamientos de los puntos A (NOTA: 0,5) y D (NOTA: 0,5). Calcule el factor de seguridad de la barra de acero si su resistencia última es de 764 MPa. (NOTA: 0,5)

3. El sistema mecánico mostrado consiste en dos barras. La barra (2) de acero con A_2 = 40 mm², E_2 = 210 GPa y α_2 =12x10⁻⁶/°C. La barra (1) de bronce con A_1 = 50 mm², α_1 = 21x10⁻⁶/°C y E_1 = 100 GPa. Y la barra viga rígida AC esta soportada por un pin en B. Las tuercas A y C están ajustadas para la posición mostrada donde las barras se encuentran sin ningún tipo de esfuerzos. Si la temperatura sobre el cuerpo tiene una variación de 50°C determine:

- El esfuerzo en la barra (1) y la barra (2). (NOTA: 1,0)
- El valor y sentido del ángulo al cual rota la viga. (NOTA: 0,5)

Facultad de Ingeniería Mecánica -- Universidad Tecnológica de Pereira

1.	En el diagrama esfuerzo vs. deformación unitaria mostrado, nombre cada uno de los puntos: (NOTA: 0,25)	Esfuerzo		D E
ı	A:	C		
	B:	B		
1	D:			Deformación
ı	E:			Unitaria
 3. 4. 	Dibuje sobre el diagrama al menos tres zonas r Rellenar si es falso (F) o verdadero (V), según co Los valores de los coeficientes de Poiss La ley de Hooke me sirve para calcular En el diagrama esfuerzo vs deformad determinar el σ _Y . Un plástico tiene mayor módulo de ela Dibuje en los puntos infinitesimales mostrados mostrados en este. Mencione que tipo de camb	orresponda. (NOTA on son iguales en t los esfuerzos para ción unitaria de un sticidad que un acc s los vectores de e	A: 0,4) codas las direcciones e cualquier deformación n material frágil usua ero, ya que el plástico sfuerzos necesarios pa	n la madera. n del cuerpo. Imente no se puede se deforma mas. ara sufrir los cambios
	Estado inicial			