
Codigo de asignatura: 4769B4
Nombre del programa académico Maestría en Ingeniería Eléctrica
Nombre completo de la asignatura Métodos y Modelos Computacionales

Número de créditos ECTS por
categoría

Ciencias naturales y
matemáticas

Módulos profesionales y
especiales

Humanidades y ciencias
sociales y económicas

3 3 1
Semestre y año de actualización 2026-1
Semestre y año en que se imparte 2026-1
Tipo de asignatura [] Obligatoria [X] Electiva
Director o contacto del programa Andrés Escobar Mejía
Coordinador o contacto de la
asignatura Germán Andrés Holguín Londoño

Descripción y contenidos
1. Breve descripción
Este curso describe las técnicas básicas para el análisis de la complejidad de un algoritmo. Se incluyen técnicas de diseño y
análisis de algoritmos recursivos e iterativos fundamentales en tareas como búsqueda, ordenamiento, operaciones de conjuntos,
algoritmos gráficos, algoritmos de manipulación matricial, transformaciones lineales y no lineales, problemas NP-completos, y
otras tareas fundamentales en ciencias de la computación, que son transversales a la mayoría de los campos de la investigación
científica.
2. Objetivo del curso:
Se espera que al finalizar este curso el estudiante esté en la capacidad de diseñar algoritmos eficientes para la solución de
problemas fundamentales en ciencias de la computación. Comprender los fundamentos básicos de la teoría de la complejidad y
aplicarlos en el análisis de algoritmos. Tomar decisiones en el diseño de soluciones computacionales a problemas de ingeniería.
Dar solución algorítmica a las tareas básicas que aparecen en la mayoría de los campos de la investigación científica utilizando
Python como lenguaje de programación de base. Se corresponde con los siguientes Resultados de Aprendizaje del Programa
(RAP3, RAP4, RAP5, RAP6, RAP7, RAP8, RAP9, RAP10, RAP11, RAP12, RAP13)
3. Resultados de aprendizaje. Los propósitos de formación en el estudiante de posgrado son:
RA1: Entender qué es complejidad y los fundamentos básicos de la teoría de la complejidad. Se corresponde con los RAP:
RAP8, RAP10, RAP11, RAP12.
RA2: Analizar y determinar la complejidad de un algoritmo. Se corresponde con los RAP: RAP8, RAP10, RAP11, RAP12.
RA3: Diseñar algoritmos fundamentales con complejidad óptima. Se corresponde con los RAP: RAP3, RAP7, RAP8, RAP10.
RA4: Capacidad para implementar algoritmos en Python. Se corresponde con los RAP: RAP7, RAP10.
RA5: Capacidad para utilizar Python para solucionar problemas de Ingeniería. Se corresponde con los RAP: RAP1, RAP3,
RAP4, RAP7, RAP8, RAP10.
RA6: Capacidad de trabajo en equipo. Se corresponde con los RAP: RAP9, RAP13.
RA7: Capacidad de análisis y síntesis de información. Se corresponde con los RAP: RAP11, RAP12, RAP13.
RA8: Planear y ejecutar proyectos de desarrollo. Se corresponde con los RAP: RAP9, RAP10, RAP12.
4. Contenido
T1: Introducción a los métodos y modelos computacionales.
T2: Problemas NP-Completos.
T3: Algoritmos de ordenamiento.
T4: Programación lineal.
T5: Teoría de Grafos.
T6: Programación dinámica y búsqueda avara.
T7: Optimización irrestricta.
T8: Optimización no lineal con restricciones.
5. Requisitos. Los definidos en requisito de admisión de la IES.
Competencias:
1. Capacidad de programación en cualquier lenguaje de programación.
2. Conocimientos básicos de cálculo integral.
6. Recursos
Herramientas informáticas:
- Python, PyCharm, Spyder, Anaconda. Todas herramientas de software libre.
Bibliografía

[1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms, Third Edition
(3rd. ed.). The MIT Press. 2009.
[2] Erwin Kreyzig. Advanced Engineering Mathematics. Tenth Edition. John Wiley & Sons Inc Editorial. 2011.
[3] Michael R Garey; David S Johnson. Computers and Intractability, A Guide to the Theory of NP-Completeness. Bell
Telephone Laboratories. 1979.
[4] Martin D Davis; Ron Sigal; Elaine J Weyuker. Computability, Complexity, and Languages: Fundamentals of Theoretical
Computer Science. Academic Press. 1994.
7. Herramientas técnicas de soporte para la enseñanza
- Ejercicios de programación de funciones básicas en Python.
- Ejercicios de comparación de complejidades utilizando Python.
- Ejemplos en clase sobre complejidad computacional.
- Ejemplos en clase sobre algoritmos de búsqueda y ordenamiento.
- Ejemplos de estructuras de datos en Python.
- Ejemplos de optimización utilizando Python.
- Ejercicios de problemas NP-Completos.
- Otras herramientas se presentan en 6.
8. Trabajos en laboratorio y proyectos
- Asignación del curso.
- Trabajos en clase de programación y análisis.
9. Métodos de aprendizaje
Cátedra magistral. Se efectúa planteamiento y debates sobre problemas y diseños propuestos.
Aula extendida. Se dejan temáticas específicas para ser estudiadas y profundizadas en trabajo independiente.
Aprendizaje basado en problemas. Se presentan problemas reales de aplicación al diseño de autómatas.
Trabajos colaborativos. Se desarrollan actividades independientes, personalizadas y grupales en forma de trabajos prácticos.
Investigación formativa. Se fomenta la investigación a través de actividades que permitan la construcción u organización de
conocimiento.
10. Métodos de evaluación
Para la obtención de la nota definitiva se realizan diferentes pruebas mediante informes escritos y sustentaciones individuales y
grupales de las asignaciones requeridas durante el semestre, las cuales están previstas:
- Examen 1: (T1), (T2), y (T3). (20%). Se evalúan los resultados de aprendizaje (RA1, RA2).
- Examen 2: (T4), (T5), y (T6). (20%). Se evalúan los resultados de aprendizaje (RA3, RA4)

